Measuring tumor infiltrating lymphocytes predicts long term outcomes for type of early breast cancer

In In The News by Barbara Jacoby

By: Queen Mary, University of London

From: medicalxpress.com

Researchers from Queen Mary University London and Emory University used a novel AI-based analytic tool to better understand how tumor infiltrating lymphocytes (TILs) can predict which cases of Ductal Carcinoma in Situ (DCIS) would go on to become invasive breast cancer.

DCIS is a form of early , where some cells in the lining of ductal tissue have started to develop into . Without treatment, a proportion of DCIS cases will go on to become invasive breast cancer.

This study, published July 9 in The Lancet Digital Health, is the largest and most robust investigation of automated estimation of these tumor infiltrating or TILs.

Using randomized data from the UK/ANZ DCIS trial, researchers showed that a high density of TILs is associated with a 3-fold higher risk of progression to invasive breast cancer. Tumors with a high density of TILs were also found to be more susceptible to radiotherapy.

This work provides a new way to help distinguish and identify those women with DCIS who would benefit from over and above surgery from women who could be spared overtreatment in the form of radiation therapy. It could also be provided at lower cost to women with DCIS all over the world, thanks to its non-tissue destructive approach, which would allow more informed treatment decision making.

Senior co-author Mangesh Thorat, honorary reader, Wolfson Institute of Population Health, said, “We have done two key things here. First, using the material from a randomized trial, we employed a very robust study design. This allowed us to eliminate limitations of previous studies and evaluate the biomarker in the best possible manner.

“Second, we harnessed the potential of AI to measure biomarker in a very precise quantitative manner, something humans cannot easily do. The result is that we have a robust biomarker that not only predicts which patients are at a substantially higher risk of progressing to but also tells us which subgroup of patients can avoid radiotherapy and thus help us prevent overtreatment.”